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Studies on candidate pandemic vaccines against avian influenza viruses have focused on H5N1, but viruses of other subtypes,
such as A/H9N2, are also considered to have pandemic potential. We investigated the safety and immunogenicity of two immu-
nizations with one of five different antigen doses (ranging from 3.75 to 45 �g of hemagglutinin antigen) of a nonadjuvanted
whole-virus G9 lineage H9N2 influenza virus vaccine in healthy adults aged 18 to 49 years. The antibody responses were mea-
sured by hemagglutination inhibition (HI), microneutralization (MN), and single radial hemolysis (SRH) assays. To investigate
a hypothesis that previous exposure to H2N2 viruses in subjects born in or before 1968 might prime for more robust antibody
responses to H9N2 vaccination than that in subjects born after 1968, a post hoc age-stratified analysis of antibody responses was
done. Both vaccinations in all dose groups were safe and well tolerated. No vaccine-related serious adverse events were reported,
and the majority of the adverse reactions were rated as mild. The rates of injection site reactions were lower in the 3.75-�g- and
7.5-�g-dose groups than those in the higher-dose groups; the rates of systemic reactions were similar across all dose groups. The
seroprotection rates among the different dose groups 21 days after the second immunization ranged from 52.8% to 88.9% as
measured by HI assay, from 88.7% to 98.1% or 82.7% to 96.2% as measured by MN assay (MN titer cutoffs, 1:40 and 1:80, respec-
tively), and from 94.2% to 100% as measured by SRH assay. Higher antibody responses were not induced in subjects born in or
before 1968. These data indicate that a nonadjuvanted whole-virus H9N2 vaccine is well tolerated and immunogenic in healthy
adults. (This study has been registered at ClinicalTrials.gov under registration no. NCT01320696.)

Anumber of avian influenza virus subtypes have caused zoo-
notic infections in humans, including those of subtypes

H5N1 (1), H9N2 (2), and, most recently, H7N9 (3) and H10N8
(4). Because the human population is largely immunologically
naive to such viruses, there are concerns that a pandemic situation
might occur if any of these viruses gains the capacity for efficient
human-to-human transmission. The development of candidate
pandemic vaccines to counter the threat of a pandemic resulting
from avian influenza viruses is thus an important part of global
pandemic preparedness programs (5, 6). To date, this effort has
been concentrated largely on the development of candidate pan-
demic vaccines based on influenza viruses of the H5N1 subtype. A
number of clinical studies have demonstrated whole-virus inacti-
vated H5N1 vaccines to be immunogenic in adult, elderly, and
pediatric populations without a requirement for adjuvantation
(7–11). In the present study, we extend the clinical investigation of
nonadjuvanted whole-virus avian influenza vaccines to include a
vaccine against the H9N2 influenza virus subtype, which is enzo-
otic in poultry across the Middle East and Asia and is considered to
have pandemic potential (12, 13).

Three genetically and antigenically distinct H9N2 lineages, G1,
G9, and Korean, have been reported (2), two of which (G1 and
G9) have caused sporadic human infections. To date, human
H9N2 infections have been associated with only mild disease (2,
14, 15), and there has been no documented transmission between
humans. However, some seroepidemiological data suggest that
there may be considerable underreporting of human H9N2 infec-
tions (16). Moreover, a substantial proportion of H9N2 viruses
isolated in the Middle East and Asia contain an amino residue in

the hemagglutinin (HA) receptor binding site (RBS) (13) that
facilitates binding to �2,6-linked sialic acid receptors, such that
the virus can replicate in human airway epithelial cells (17, 18).
Several H9N2 isolates also contain amino residues in the HA RBS
that facilitate transmission between mammals (13, 19). In addi-
tion, the cocirculation of H9N2 with other avian influenza viruses
might result in the emergence of new virus strains with increased
pathogenicities. Reassortment between H9N2, H5N1, and H7N3
viruses has been reported in the field (20–22), and increased
pathogenicity and host range have been demonstrated experimen-
tally for reassortants between H9N2 and H3N2 viruses (19, 23)
and between H9N2 and the 2009 pandemic H1N1 virus (16, 24).
Additionally, H9N2 viruses are reported to have contributed in-
ternal genes to H5N1, H7N9, and H10N8 viruses that have in-
fected and killed humans (25, 26). The development of effective
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vaccines against H9N2 viruses, in addition to other avian influ-
enza viruses with pandemic potential, might thus be an important
aspect of pandemic preparedness.

We recently reported the nonclinical development of a Vero-
derived whole-virus vaccine based on an H9N2 virus of the G9
lineage (27). In the present study (registered at ClinicalTrials.gov
under registration no. NCT01320696), we undertook a double-
blind randomized dose-finding phase I/II clinical trial to evaluate
the safety and immunogenicity of this whole-virus H9N2 vaccine
in healthy adults. To investigate a hypothesis that previous expo-
sure to H2N2 viruses in subjects born in or before 1968 might
prime for more robust antibody responses to H9N2 vaccination
than that in subjects born after 1968 (28, 29), a post hoc age-strat-
ified analysis of antibody responses was also done.

MATERIALS AND METHODS
Vaccine. The nonadjuvanted inactivated whole-virus Vero cell culture-
derived H9N2 vaccine was manufactured using a reverse genetics (RG)-
modified strain A/chicken/Hong Kong/G9/97 (H9N2) virus (NIBRG-91)
obtained from the National Institute for Biological Standards and Control
(NIBSC) (United Kingdom). This vaccine was produced using a proce-
dure identical to that used for the manufacture of licensed H5N1 and 2009
pandemic H1N1 (H1N1pdm09) whole-virus vaccines (30, 31). Briefly,
the vaccine virus strain was grown in Vero cell culture and, after harvest,
was double inactivated with formalin and UV irradiation and purified by
continuous sucrose gradient centrifugation and ultra-/diafiltration steps
prior to formulation. The HA content was determined by a single radial
immunodiffusion assay.

Study design and procedures. A phase I/II randomized double-blind
study to assess the safety and immunogenicity of two immunizations with
a whole-virus H9N2 influenza virus vaccine was undertaken in healthy
adults aged 18 to 49 years at five study centers in the United States between
16 March and 20 October 2011, in accordance with the principles set forth
in Title 21 of the U.S. Code of Federal Regulations, the International
Committee on Harmonisation Guidelines for Good Clinical Practice, the
Declaration of Helsinki, and local and national regulatory requirements.
The study protocol was approved by the relevant ethics committees, prior
institutional review board (IRB) approval was obtained from each insti-
tution that participated in the study, and written informed consent was
provided by each study participant.

Approximately 275 subjects were randomized 1:1:1:1:1 (55 per arm) to
five dose groups to receive two immunizations, 21 days apart, with a
vaccine formulated to contain 3.75, 7.5, 15, 30, or 45 �g of HA antigen
in a volume of 0.5 ml. Randomization was done centrally using an
interactive voice response system, carried out in blocks using the ran-
dom number generator algorithm of Wichmann and Hill (32), as mod-
ified by McLeod (33). The site staff and subjects remained blinded
until the end of the study. Vaccination was administered by intramus-
cular injection into the deltoid muscle of the upper arm. Blood sam-
ples for the assessment of immune responses were drawn immediately
before and 21 � 2 days after each vaccination, as well as 180 � 2 days
after the first immunization.

The primary immunogenicity endpoints were the numbers of sub-
jects with a hemagglutination inhibition (HI) antibody response to the
vaccine strain associated with seroprotection and seroconversion 3
weeks after the second vaccination. Secondary immunogenicity end-
points included HI, microneutralization (MN), and single radial he-
molysis (SRH) responses 3 weeks after each immunization and 6
months after the first immunization.

The subjects were provided with a subject diary to collect data on oral
body temperature, solicited systemic and injection site reactions, and any
other adverse events (AEs). The diary entries were evaluated and the data
graded for severity and relatedness by the investigator. The fever and
injection site reaction severity ratings were adapted from the FDA Guid-

ance for Industry: Toxicity Grading Scale for Healthy Adult and Adolescent
Volunteers Enrolled in Preventive Vaccine Clinical Trials (34). The primary
safety endpoints were the frequency and severity of injection site and
systemic reactions within 7 days after the first and second vaccinations.
The secondary safety endpoints included the frequency and severity of
AEs observed during the entire study period.

Laboratory methods. The HI and MN assays were conducted by Fo-
cus Diagnostics, Inc. (Cypress, CA, USA), and the SRH assays were con-
ducted by VisMederi srl (Siena, Italy). All assays were validated accord-
ing to international standards (35, 36) to ensure that the performance
characteristics of the methods met the requirements for use with the
A/chicken/Hong Kong/G9/97 (H9N2) virus.

The HI assays were done according to standard methods using turkey
erythrocytes. Briefly, serum samples were treated with a receptor-destroy-
ing enzyme, inactivated at 56°C, and serially diluted in 2-fold steps, start-
ing at 1:10. Prior to the addition of the erythrocytes, the serum samples
were preincubated at a ratio of 1:1 with H9N2 antigen (adjusted to an HA
titer of about 3). Following the addition of the erythrocytes, the suspen-
sions were carefully mixed and incubated at room temperature (RT) be-
fore determination of the HI titer. Serum samples with a negative signal in
the first dilution were assigned a nominal HI titer of 1:5.

The enzyme-linked immunosorbent assay (ELISA)-based MN assay is
based on the assay originally developed for serological evaluation of H5N1
vaccines (37) and subsequently widely used for the evaluation of pandemic
H1N1 vaccines (38–41). In brief, duplicates of heat-inactivated serum sam-
ples were serially diluted with phosphate-buffered saline (PBS) in 2-fold steps,
starting at a 1:5 dilution. Fifty microliters of each dilution was transferred to a
microtiter plate, mixed 1:1 with H9N2 virus (adjusted to 100� the 50% tissue
culture infective dose [TCID50]/50 �l), and incubated for 1 h at RT. After the
addition of 100 �l/well MDCK cell suspension (5 � 105/ml), the plates were
incubated for 18 to 22 h at 37°C, fixed with a methanol-acetone mixture, and
incubated with a primary antibody (anti-influenza A nucleoprotein mouse
monoclonal antibody) and then with a horseradish peroxidase-conjugated
rabbit anti-mouse IgG secondary antibody. Following substrate (o-phenyl-
enediamine [OPD]) addition and incubation, stop solution was added, and
the absorbance (optical density [OD]) of the wells at 450/620 nm was read.
The neutralization titer of a sample was determined as the highest serum
dilution with an OD lower than or equal to the 50% neutralization point of
the plate, calculated from the OD values of the virus control wells (medium
plus test dilution of virus plus MDCK cells) and of the negative cell control
wells (medium plus MDCK cells). The titer of each sample was defined as the
geometric mean of the titers from the two individual determinations. Serum
samples with a negative signal in the first dilution were assigned a nominal
MN titer of 1:5. The SRH assay was done essentially as previously described
(42). SRH areas of �4 mm2 were considered negative.

Statistical analyses. Assuming a dropout rate of around 9%, 50 sub-
jects per dose group would be evaluable for immunogenicity. The 50
evaluable subjects ensured a width of the exact 95% confidence interval
(CI) for the percentage of subjects who achieved seroprotection and sero-
conversion based on the Clopper-Pearson method of �29% in each dose
group. With 275 vaccinated subjects, there would be a 93% chance to
observe an AE with an underlying incidence rate of 1:100.

Point estimates of the response rates and exact 95% CIs were com-
puted for the primary immunogenicity endpoints. In addition, a logistic
regression model that included dose levels, baseline antibody titers, age,
and gender as independent factors was fitted. Point estimates of the geo-
metric means and two-sided 95% CIs were calculated for all continuous
secondary immunogenicity endpoints for each vaccine dose within an
analysis of covariance (ANCOVA) framework. The model includes dose,
age, and gender as fixed effects and baseline values as covariates. The
antibody titers were log-transformed prior to the analysis. The least-
squares means and two-sided 95% CIs were computed for each dose
group, and the differences between the means were estimated and back
transformed by exponentiation. This analysis was carried out separately
for antibody responses measured by HI, MN, and SRH 3 weeks after the
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first and second vaccination and 6 months after the first vaccination. The
correlation between the seroprotective HI titer and SRH area cutoffs (1:40
and 25 mm2, respectively) and different MN titer cutoff values was ana-
lyzed according to Cohen’s kappa coefficient (43). Point estimates and
exact two-sided 95% CIs were calculated for all safety endpoints. All anal-
yses were carried out utilizing the statistical software package SAS version
9.1.3 (SAS Institute, Inc., Cary, NC, USA). A post hoc analysis of antibody
responses, comprising descriptive statistics of the response rates and con-
tinuous immunogenicity endpoints in subjects born either in or before
1968 or after 1968, was carried out.

RESULTS
Study population. The trial profile is shown in Fig. 1. A total of
353 subjects were enrolled in the study and screened, of whom 275
were eligible, randomized to receive the first immunization, and
included in the safety data set. Two hundred seventy-three sub-
jects were included in the immunogenicity analyses 3 weeks after
the first immunization. A total of 269 subjects received the second
vaccination, and 264 and 256 subjects were included in the immu-
nogenicity analyses 3 weeks after the second immunization and 6
months after the first immunization, respectively. The dose
groups were balanced with respect to all baseline demographic
characteristics (Table 1).

Safety. Both vaccinations were safe and well tolerated in all
dose groups. The reactions were transient and predominantly
mild. No vaccine-related serious AEs were reported. Injection site
and systemic reactions were reported less frequently after the sec-
ond immunization than after the first. The injection site and sys-
temic reactions after the first vaccination are shown in Table 2.
The rates of injection site reactions within 7 days of the first and
second vaccinations ranged from 16.1% to 41.8% and from 13.2%

to 37.0%, respectively, among the different dose groups. The ma-
jority of the reported injection site reactions were injection site
pain and tenderness, with very few reported cases of other injec-
tion site reactions. The rates of injection site reactions were lower
at the lower dose levels of 3.75 and 7.5 �g (ranges, 16.1% to 18.2%
and 13.2% to 15.1% after the first and second immunizations,
respectively) than those at the 15-, 30-, and 45-�g dose levels
(ranges, 32.7% to 41.8% and 21.8% to 37.0% after the first and
second immunizations, respectively).

The rates of systemic reactions were comparable across the differ-
ent dose groups, ranging from 12.5% to 25.9% after the first vaccina-
tion and from 5.6% to 13.0% after the second vaccination. Headache
and fatigue were the most commonly reported systemic reactions,
with rates of �18.5% and �7.3% after the first and second vaccina-
tion, respectively, for headache, and rates of �16.4% and �5.7%,
respectively, for fatigue. No subjects developed fever after the first
vaccination; one subject in the 45-�g-dose group reported moderate
fever (38.4°C) after the second vaccination.

Hemagglutination inhibition, virus-neutralizing, and single
radial hemolysis antibody responses. The antibody responses in-
duced by the whole-virus H9N2 vaccine, as assessed by HI, MN,
and SRH assays, are shown in Tables 3, 4, and 5, respectively. Two
immunizations with the whole-virus H9N2 vaccine induced sub-
stantial serum antibody responses in all dose groups. The seropro-
tection rates determined by the HI assay 3 weeks after the second
vaccination ranged from 52.8% in the 7.5-�g-dose group to
88.9% in the 45-�g-dose group (Table 3). The HI seroconversion
rates after the second immunization ranged from 50.9% in the
7.5-�g-dose group to 88.9% in the 45-�g-dose group. The HI
geometric mean titers (GMTs) ranged from 5.3 to 6.1 at baseline

FIG 1 Flow chart of the study participants through the trial.
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and from 32.5 to 104.3 after the second immunization. The geo-
metric mean fold rise (GMFR) of the HI antibody responses com-
pared to baseline after the second vaccination ranged from 5.7 in
the 3.75-�g-dose group to 19.8 in the 45-�g-dose group. The

ANCOVA of the HI antibody GMTs induced after the second
immunization showed a statistically significant effect of vaccine
dose and baseline antibody titer (P � 0.001) on the HI antibody
responses, as well as age (P � 0.014) and gender (P � 0.012). A

TABLE 1 Demographic and clinical characteristics of the participants at baseline

Patient characteristic

Data by dose groupa

3.75 �g (n � 56) 7.5 �g (n � 55) 15 �g (n � 54) 30 �g (n � 55) 45 �g (n � 55)

Male sex (no. [%]) 23 (41.1) 28 (50.9) 23 (42.6) 24 (43.6) 26 (47.3)
Age (mean � SD) (yr) 32.5 � 8.6 32.6 � 8.7 33.8 � 8.1 35.8 � 9.3 34.1 � 9.0

Born (no. [%]):
In or before 1968 12 (21.4) 9 (16.4) 10 (18.5) 17 (30.9) 15 (27.3)
After 1968 44 (78.6) 46 (83.6) 44 (81.5) 38 (69.1) 40 (72.7)

Wt (mean � SD) (kg) 78.6 � 15.4 79.5 � 16.9 80.7 � 15.4 80.3 � 18.6 83.3 � 17.1
Ht (mean � SD) (cm) 171.2 � 7.4 172.2 � 10.1 171.5 � 10.2 170.9 � 9.6 172.3 � 8.9

Race (no. [%])
White 45 (80.4) 45 (81.8) 41 (75.9) 44 (80.0) 42 (76.4)
Black or African-American 9 (16.1) 7 (12.7) 11 (20.4) 9 (16.4) 11 (20.0)
Asian 1 (1.8) 2 (3.6) 2 (3.7) 2 (3.6) 1 (1.8)
Other 1 (1.8) 1 (1.8) 0 (0.0) 0 (0.0) 1 (1.8)

Ethnicity (no. [%])
Hispanic or Latino 4 (7.1) 5 (9.1) 2 (3.7) 4 (7.3) 4 (7.3)
Not Hispanic or Latino 52 (92.9) 50 (90.9) 52 (96.3) 51 (92.7) 51 (92.7)

a n, total number of participants per group.

TABLE 2 Injection site and systemic reactions after first immunization

Reaction type and severity

% (95% CI) with reaction by dose groupa

3.75 �g (n � 56) 7.5 �g (n � 55) 15 �g (n � 54) 30 �g (n � 55) 45 �g (n � 55)

Injection site 16.1 (7.6–28.3) 18.2 (9.1–30.9) 35.2 (22.7–49.4) 32.7 (20.7–46.7) 41.8 (28.7–55.9)
Severity

Mild 16.1 18.2 29.6 30.9 36.4
Moderate 0.0 0.0 5.6 0.0 5.5
Severe 0.0 0.0 0.0 0.0 0.0
Unknown 0.0 0.0 0.0 1.8 0.0

Type
Pain 5.4 (1.1–14.9) 14.5 (6.5–26.7) 13.0 (5.4–24.9) 18.2 (9.1–30.9) 27.3 (16.1–41.0)
Tenderness 16.1 (7.6–28.3) 14.5 (6.5–26.7) 25.9 (15.0–39.7) 30.9 (19.1–44.8) 34.5 (22.2–48.6)
Redness 0.0 (0.0–6.4) 0.0 (0.0–6.5) 0.0 (0.0–6.6) 0.0 (0.0–6.5) 1.8 (0.0–9.7)
Swelling 0.0 (0.0–6.4) 0.0 (0.0–6.5) 0.0 (0.0–6.6) 0.0 (0.0–6.5) 0.0 (0.0–6.5)
Induration 0.0 (0.0–6.4) 0.0 (0.0–6.5) 0.0 (0.0–6.6) 0.0 (0.0–6.5) 3.6 (0.4–12.5)
Bruising 0.0 (0.0–6.4) 1.8 (0.0–9.7) 1.9 (0.0–9.9) 0.0 (0.0–6.5) 1.8 (0.0–9.7)

Systemic 12.5 (5.2–24.1) 25.5 (14.7–39.0) 25.9 (15.0–39.7) 20.0 (10.4–33.0) 23.6 (13.2–37.0)
Severity

Mild 10.7 21.8 22.2 18.2 20.0
Moderate 0.0 1.8 3.7 1.8 3.6
Severe 1.8 0.0 0.0 0.0 0.0
Unknown 0.0 1.8 0.0 0.0 0.0

Type
Feverb 0.0 (0.0–6.4) 0.0 (0.0–6.5) 0.0 (0.0–6.6) 0.0 (0.0–6.5) 0.0 (0.0–6.5)
Malaise 1.8 (0.0–9.6) 3.6 (0.4–12.5) 3.7 (0.5–12.7) 1.8 (0.0–9.7) 3.6 (0.4–12.5)
Shivering 0.0 (0.0–6.4) 3.6 (0.4–12.5) 0.0 (0.0–6.6) 0.0 (0.0–6.5) 3.6 (0.4–12.5)
Fatigue 5.4 (1.1–14.9) 16.4 (7.8–28.8) 7.4 (2.1–17.9) 3.6 (0.4–12.5) 3.6 (0.4–12.5)
Headache 3.6 (0.4–12.3) 16.4 (7.8–28.8) 18.5 (9.3–31.4) 7.3 (2.0–17.6) 10.9 (4.1–22.2)
Sweating 0.0 (0.0–6.4) 1.8 (0.0–9.7) 0.0 (0.0–6.6) 0.0 (0.0–6.5) 1.8 (0.0–9.7)
Muscle pain 1.8 (0.0–9.6) 9.1 (3.0–20.0) 1.9 (0.0–9.9) 5.5 (1.1–15.1) 9.1 (3.0–20.0)
Joint pain 0.0 (0.0–6.4) 0.0 (0.0–6.5) 0.0 (0.0–6.6) 3.6 (0.4–12.5) 1.8 (0.0–9.7)

a Data are for reactions occurring within 21 days of vaccination, unless otherwise indicated. n, total number of participants per group.
b Reaction occurred within 7 days.
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pairwise comparison of the antibody GMTs across the dose
groups indicated differences in the vaccine-induced HI antibody ti-
ters after the second immunization between all doses except between
the 3.75- and 7.5-�g-dose groups and the 15- and 30-�g-dose
groups. The HI antibody levels determined 6 months after the first
immunization were lower than those at 3 weeks after the second im-
munization; however, they were substantially higher than those at
baseline, with seroprotection rates ranging from 19.6% in the 3.75-
�g-dose group to 59.6% in the 45-�g-dose group.

The antibody responses determined by the MN (Table 4) and
SRH (Table 5) assays confirmed the immunogenicity of the whole-
virus H9N2 vaccine. Both assays were more sensitive than the HI
assay for detecting antibodies induced by the H9N2 vaccine, demon-
strating higher rates of seroprotection and seroconversion after vac-
cination. As there is no standard neutralization assay for influenza
viruses and, as such, no internationally accepted titer cutoff for sero-
protection as for the HI assay, we calculated seroprotection based on
two different cutoff titers, i.e., 1:40 and 1:80. After the second vacci-
nation, the seroprotection rates determined by the MN assay ranged
from 88.7% to 98.1% (MN titer cutoff, 1:40) and 82.7% to 96.2%
(MN titer cutoff, 1:80), among the different dose groups (Table 4),
with seroconversion rates ranging from 94.2% to 98.1%. The sero-
protection rates determined by the SRH assay after the second immu-
nization ranged from 94.2% to 100%, and the seroconversion rates
ranged from 67.3% to 81.5% (Table 5).

The baseline GMTs determined by the MN assay (range, 6.2 to
9.0) were similar to those determined by the HI assay; the baseline
SRH GMTs (range, 12.8 to 16.5) were higher than those deter-
mined by the HI and MN assays. The GMTs after the second
immunization as determined by the MN and SRH assays ranged

from 164.3 to 416.3 and from 51.5 to 70.9, respectively. The
GMFRs after the second immunization determined by the MN
and SRH assays were 22.2 to 67.4 and 3.7 to 5.5, respectively. The
ANCOVA of the MN and SRH antibody GMTs induced after the
second immunization showed a statistically significant effect of
vaccine dose (P � 0.001) and baseline antibody titer (P � 0.001)
but not of gender (P � 0.212). Age had a significant effect on MN
titers (P � 0.004) but not on SRH titers (P � 0.201). Consistent
with the higher sensitivities of the MN and SRH assays, the dose
responses determined by these assays were less marked than that
measured by the HI assay. A pairwise comparison of the MN and
SRH antibody GMTs across the dose groups after the second im-
munization showed no statistically significant differences in the
vaccine-induced MN antibody titers between the 3.75- and 7.5-
�g, 7.5- and 15-�g, 15- and 30-�g, and 30- and 45-�g-dose
groups, and there were no statistically significant differences in the
vaccine-induced SRH antibody titers between the 3.75- and 7.5-
�g, 7.5- and 15-�g, 7.5- and 30-�g, and 15- and 30-�g-dose
groups. The ranges of the seroprotection rates persisting 6 months
after the first immunization as determined by the MN assay were
51.0% to 84.3% using the MN titer cutoff of 1:40 and 25.5% to
65.4% using the MN titer cutoff of 1:80; the range as determined
by the SRH assay was 90.2% to 100.0%.

An analysis of the MN and HI responses according to Cohen’s
kappa coefficient (43) demonstrated the best agreement between
the HI titer cutoff of 1:40 and the MN 1:80 cutoff (overall kappa,
0.725; 95% CI, 0.688 to 0.762). The best kappa coefficient agree-
ment between the SRH area seroprotection cutoff of 25 mm2 and
an MN titer cutoff occurred at an MN titer of 1:20 (overall kappa,
0.539; 95% CI, 0.492 to 0.585).

TABLE 3 Hemagglutinin inhibition antibody responses to H9N2 viruses 3 weeks after each immunization and 6 months after first immunization

Antibody response

Data by dose group

3.75 �g 7.5 �g 15 �g 30 �g 45 �g

Geometric mean titer (mean
[95% CI])

Baseline 5.6 (4.9–6.5) 6.1 (5.4–6.8) 5.8 (5.2–6.5) 5.7 (5.0–6.4) 5.3 (5.0–5.5)
Day 21 18.2 (13.5–24.6) 27.5 (18.3–41.1) 45.6 (31.6–65.9) 59.1 (39.4–88.7) 81.7 (58.3–114.5)
Day 42 32.5 (24.6–42.9) 40.2 (27.8–57.9) 62.7 (44.4–88.5) 71.7 (51.0–100.9) 104.3 (77.5–140.3)
Day 180 14.6 (11.7–18.2) 22.3 (15.3–32.4) 24.2 (17.9–32.7) 33.1 (25.3–43.2) 41.5 (32.0–53.7)

Seroprotection (no./total
no. [%; 95% CI])a

Baseline 1/56 (1.8; 0.0–9.6) 1/54 (1.9; 0.0–9.9) 1/54 (1.9; 0.0–9.9) 1/55 (1.8; 0.0–9.7) 0/54 (0.0; 0.0–6.6)
Day 21 17/56 (30.4; 18.8–44.1) 22/54 (40.7; 27.6–55.0) 33/54 (61.1; 46.9–74.1) 35/55 (63.6; 49.6–76.2) 40/54 (74.1; 60.3–85.0)
Day 42 28/52 (53.8; 39.5–67.8) 28/53 (52.8; 38.6–66.7) 39/52 (75.0; 61.1–86.0) 42/53 (79.2; 65.9–89.2) 48/54 (88.9; 77.4–95.8)
Day 180 10/51 (19.6; 9.8–33.1) 17/51 (33.3; 20.8–47.9) 22/51 (43.1; 29.3–57.8) 28/51 (54.9; 40.3–68.9) 31/52 (59.6; 45.1–73.0)

Seroconversion (no./total
no. [%; 95% CI])b

Day 21 16/56 (28.6; 17.3–42.2) 21/54 (38.9; 25.9–53.1) 32/54 (59.3; 45.0–72.4) 35/55 (63.6; 49.6–76.2) 40/54 (74.1; 60.3–85.0)
Day 42 27/52 (51.9; 37.6–66.0) 27/53 (50.9; 36.8–64.9) 38/52 (73.1; 59.0–84.4) 41/53 (77.4; 63.8–87.7) 48/54 (88.9; 77.4–95.8)
Day 180 9/51 (17.6; 8.4–30.9) 17/51 (33.3; 20.8–47.9) 21/51 (41.2; 27.6–55.8) 28/51 (54.9; 40.3–68.9) 31/52 (59.6; 45.1–73.0)

GMFR (mean [95% CI])c

Day 21 3.2 (2.4–4.3) 4.5 (3.1–6.6) 7.8 (5.5–11.2) 10.4 (7.0–15.6) 15.5 (11.1–21.7)
Day 42 5.7 (4.3–7.5) 6.6 (4.8–9.1) 10.7 (7.6–15.0) 12.7 (9.1–17.8) 19.8 (14.8–26.6)
Day 180 2.7 (2.2–3.3) 3.9 (2.8–5.4) 4.3 (3.2–5.9) 6.1 (4.7–7.9) 8.1 (6.3–10.3)

a Hemagglutinin inhibition (HI) titer, �1:40.
b �4-fold titer increase compared to baseline.
c Geometric mean fold rise (GMFR) compared to baseline.
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Post hoc analyses of the effect of age and baseline antibody
titers on hemagglutination inhibition, virus-neutralizing, and
single radial hemolysis antibody responses. Some previous stud-
ies of H9N2 vaccines based on a G1 lineage virus had reported that
the HI and MN antibody responses induced in individuals born in
or before 1968 were higher than those in individuals born after
1968, possibly as a result of immunological priming by previous
exposure to H2N2 viruses, which circulated widely between 1957
and 1968 but not afterwards (28, 29). In contrast, a more recent
study did not find similar age-related differences in the antibody
responses to an H9N2 vaccine based on a G9 lineage virus (44),
which is the lineage of the virus from which the vaccine in the
present study was derived.

To investigate this phenomenon in the present study, a post hoc
stratification of the participants was done according to their birth
either in or before 1968 or after 1968. Descriptive statistics of the
response rates and continuous immunogenicity endpoints were
calculated. Due to the inclusion of multiple dose groups of a rel-
atively small size in this study, the dose groups were pooled for the
purpose of this post hoc analysis, as was also done for previous
investigations into age group-specific antibody responses to
H9N2 vaccines (29). Figure 2 shows these data for the HI, MN,

and SRH antibody responses at baseline, 21 days after the first and
second vaccinations, and 6 months after the first vaccination. For
all three serological assays, the antibody responses at all time
points are similar in the two age groups. There were no statistically
significant differences in the antibody responses for any of the
assays at any of the time points, except for a statistically significant
difference in the SRH antibody response observed at baseline, for
which higher titers were measured in the older age group.

DISCUSSION

A nonadjuvanted Vero cell culture-derived whole-virus H9N2 in-
fluenza vaccine is safe and well-tolerated in healthy adults aged 18
to 49 years. No vaccine-related serious AEs were reported, and the
majority of the adverse reactions were rated as mild, consistent
with the safety profile of the Vero-derived whole-virus H5N1 and
H1N1 vaccines previously reported in clinical trials in healthy
adults (7, 11, 38). The rates of injection site reactions were lower at
the lower dose levels of 3.75 and 7.5 �g than those at the 15-, 30-,
and 45-�g-dose levels. The rates of systemic reactions were com-
parable across all dose groups. Only one case of fever was reported,
which was in a participant who received the highest vaccine dose.
The rates of injection site and systemic reactions were similar to

TABLE 4 Neutralizing antibody responses to H9N2 viruses 3 weeks after each immunization and 6 months after first immunization

Antibody response

Data by dose group

3.75 �g 7.5 �g 15 �g 30 �g 45 �g

Geometric mean titer
(mean [95% CI])

Baseline 7.2 (5.7–9.1) 9.0 (6.9–11.7) 7.5 (6.0–9.4) 8.8 (6.3–12.1) 6.2 (5.2–7.4)
Day 21 57.3 (37.5–87.5) 129.5 (81.1–206.6) 142.5 (91.3–222.5) 233.5 (159.1–342.7) 272.6 (185.0–401.6)
Day 42 164.3 (118.8–227.4) 230.8 (151.3–351.9) 255.1 (181.0–359.6) 339.4 (247.7–465.1) 416.3 (300.2–577.4)
Day 180 37.4 (25.9–53.9) 67.0 (42.3–106.2) 66.1 (46.8–93.5) 101.5 (72.3–142.4) 117.0 (82.5–165.8)

Seroprotection (MN titer
� 1:40) (no./total
no. [%; 95% CI])

Baseline 1/56 (1.8; 0.0–9.6) 8/54 (14.8; 6.6–27.1) 4/54 (7.4; 2.1–17.9) 5/55 (9.1; 3.0–20.0) 3/54 (5.6; 1.2–15.4)
Day 21 33/56 (58.9; 45.0–70.1) 41/54 (75.9; 62.4–86.5) 45/54 (83.3; 70.7–92.1) 51/55 (92.7; 82.4–98.0) 50/54 (92.6; 82.1–97.9)
Day 42 50/52 (96.2; 86.8–99.5) 47/53 (88.7; 77.0–95.7) 50/52 (96.2; 86.8–99.5) 52/53 (98.1; 89.9–100.0) 53/54 (98.1; 90.1–100.0)
Day 180 26/51 (51.0; 36.6–65.2) 32/51 (62.7; 48.1–75.9) 37/51 (72.5; 58.3–84.1) 43/51 (84.3; 71.4–93.0) 42/52 (80.8; 67.5–90.42)

Seroprotection (MN titer
� 1:80) (no./total
no. [%; 95% CI])

Baseline 1/56 (1.8; 0.0–9.6) 4/54 (7.4; 2.1–17.9) 2/54 (3.7; 0.5–12.7) 5/55 (9.1; 3.0–20.0) 1/54 (1.9; 0.0–9.9)
Day 21 24/56 (42.9; 29.7–56.8) 34/54 (63.0; 48.7–75.7) 39/54 (72.2; 58.4–83.5) 43/55 (78.2; 65.0–88.2) 48/54 (88.9; 77.4–95.8)
Day 42 43/52 (82.7; 69.7–91.8) 44/53 (83.0; 70.2–91.9) 45/52 (86.5; 74.2–94.4) 51/53 (96.2; 87.0–99.5) 51/54 (94.4; 84.6–98.8)
Day 180 13/51 (25.5; 14.3–39.6) 24/51 (47.1; 32.9–61.5) 24/51 (47.1; 32.9–61.5) 33/51 (64.7; 50.1–77.6) 34/52 (65.4; 50.9–78.0)

Seroconversion (no./total
no. [%; 95% CI])a

Day 21 40/56 (71.4; 57.8–82.7) 44/54 (81.5; 68.6–90.7) 47/54 (87.0; 75.1–94.6) 52/55 (94.5; 84.9–98.9) 53/54 (98.1; 90.1–100.0)
Day 42 49/52 (94.2; 84.1–98.8) 49/53 (92.5; 81.8–97.9) 49/52 (94.2; 84.1–98.8) 51/53 (96.2; 87.0–99.5) 53/54 (98.1; 90.1–100.0)
Day 180 34/51 (66.7; 52.1–79.2) 41/51 (80.4; 66.9–90.2) 44/51 (86.3; 73.7–94.3) 47/51 (92.2; 81.1–97.8) 52/52 (100.0; 93.2–100.0)

GMFR (mean [95% CI])b

Day 21 8.0 (5.5–11.4) 14.4 (9.6–21.8) 18.9 (12.5–28.6) 26.7 (18.1–39.2) 44.1 (30.4–63.9)
Day 42 22.2 (16.3–30.1) 25.5 (17.4–37.2) 34.0 (23.7–48.7) 38.9 (27.2–55.7) 67.4 (48.4–93.8)
Day 180 5.4 (4.0–7.4) 9.1 (6.1–13.5) 10.3 (7.5–14.0) 13.3 (9.8–18.0) 19.9 (14.6–27.1)

a �4-fold titer increase compared to baseline.
b Geometric mean fold rise (GMFR) compared to baseline.
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those reported for other nonadjuvanted H9N2 vaccines in this age
group (28, 29, 44) but lower than those reported in a study of
H9N2 vaccines containing a novel oil-in-water adjuvant (45).

With respect to immunogenicity, substantial HI, MN, and
SRH antibody responses were induced by the nonadjuvanted
whole-virus H9N2 vaccine. There was a statistically significant
dose effect on the antibody responses measured by all assays, but
this was less marked for the MN and SRH assays, which were more
sensitive for detecting H9N2 antibodies than was the HI assay. The
seroprotection rates among the different dose groups after the
second immunization ranged from 52.8% to 88.9% as measured
by the HI assay, from 88.7% to 98.1% or 82.7% to 96.2% as mea-
sured by the MN assay (for MN titer cutoffs of 1:40 and 1:80,
respectively), and from 94.2% to 100% as measured by the SRH
assay. The HI and MN data compare favorably with those re-
ported for other nonadjuvanted whole-virus, virosomal, subunit,
and alum-adjuvanted whole-virus H9N2 vaccines (28, 29, 44, 45),
particularly with respect to the MN antibody GMTs, which were
substantially higher for the Vero-derived whole-virus H9N2 vac-
cine in the present study than the MN GMTs reported in these
previous studies. Similar rates of MN antibody responses were
reported for a subunit vaccine adjuvanted with the novel oil-in-
water adjuvant MF59 (45); however, substantially higher HI anti-
body titers were induced by the MF59-adjuvanted vaccine than by
nonadjuvanted vaccines used in the present and previous studies.
These data are consistent with studies of H5N1 vaccines which
also reported that MF59 adjuvanted vaccines induce very high HI
titers (46–48). SRH antibody responses to H9N2 vaccines were
not reported in previous studies of H9N2 vaccines (28, 29, 44, 45),

and as such, no comparison can be made with respect to SRH
antibody responses induced in the present and previous studies.

In the present study, the antibody responses detected by the HI
assay were lower than those detected by the MN and SRH assays.
The lower sensitivity of the HI assay than that of the MN assay for
detecting H9 antibodies has also been reported in previous studies
(28, 29), as well as for other avian influenza viruses (37). These
observations suggest that the HI assay might not be optimal for
detecting H9 antibodies, similar to the situation with antibodies
against H5N1 viruses, for which high rates of seroprotection based
on the HI assay are difficult to achieve without the use of novel
oil-in-water adjuvants.

The current immunogenicity criteria for pandemic influenza
virus vaccines are based on those developed for seasonal influenza
virus vaccines, where an HI titer of 1:40 or an SRH area of 25 mm2

are the serological criteria used by regulatory authorities as mark-
ers for vaccine-induced seroprotection. However, it is not known
how these correlates relate to protection from pandemic influenza
virus vaccines. In the European Union (EU), nonadjuvanted
whole-virus H5N1 vaccines have been licensed based on antibody
responses detected by MN and SRH assays (49, 50). For the MN
assay, no standardized assay and no internationally accepted cut-
off for seroprotection exist. In the present study, an analysis of the
MN and HI responses according to Cohen’s kappa coefficient (43)
demonstrated the best agreement between the HI titer cutoff of
1:40 and the MN cutoff of 1:80 (overall kappa, 0.725; 95% CI,
0.688 to 0.762). However, the best kappa coefficient agreement
between the SRH area seroprotection cutoff of 25 mm2 and an MN
titer cutoff occurs at an MN titer of 1:20 (overall kappa, 0.539;

TABLE 5 Single radial hemolysis antibody responses to H9N2 viruses 3 weeks after each immunization and 6 months after first immunization

Antibody response

Data by dose group

3.75 �g 7.5 �g 15 �g 30 �g 45 �g

Geometric mean titer
(mean [95% CI])

Baseline 13.7 (10.2–18.5) 12.9 (9.6–17.4) 16.5 (12.2–22.3) 14.9 (11.2–19.8) 12.8 (9.6–17.1)
Day 21 37.0 (29.2–46.9) 50.0 (43.7–57.2) 52.3 (45.4–60.3) 60.1 (53.7–67.2) 65.7 (59.7–72.4)
Day 42 51.5 (44.5–59.6) 56.6 (51.7–61.9) 60.7 (55.3–66.6) 63.4 (58.4–68.8) 70.9 (66.3–75.7)
Day 180 48.9 (41.7–57.3) 56.6 (51.1–62.5) 57.4 (52.7–62.6) 62.7 (59.1–66.6) 66.2 (61.5–71.2)

Seroprotection (no./total
no. [%; 95% CI])a

Baseline 22/56 (39.3; 26.5–53.2) 20/54 (37.0; 24.3–51.3) 26/54 (48.1; 34.3–62.2) 17/55 (30.9; 19.1–44.8) 18/54 (33.3; 21.1–47.5)
Day 21 45/56 (80.4; 67.6–89.8) 48/54 (88.9; 77.4–95.8) 49/54 (90.7; 79.7–96.9) 53/55 (96.4; 87.5–99.6) 53/54 (98.1; 90.1–100.0)
Day 42 49/52 (94.2; 84.1–98.8) 52/53 (98.1; 89.9–100.0) 51/52 (98.1; 89.7–100.0) 52/53 (98.1; 89.9–100.0) 54/54 (100.0; 93.4–100.0)
Day 180 46/51 (90.2; 78.6–96.7) 49/51 (96.1; 86.5–99.5) 50/51 (98.0; 89.6–100.0) 51/51 (100.0; 93.0–100.0) 51/52 (98.1; 89.7–100.0)

Seroconversion (no./total
no. [%; 95% CI])b

Day 21 30/56 (53.6; 39.7–67.0) 39/54 (72.2; 58.4–83.5) 35/54 (64.8; 50.6–77.3) 42/55 (76.4; 63.0–86.8) 42/54 (77.8; 64.4–88.0)
Day 42 35/52 (67.3; 52.9–79.7) 42/53 (79.2; 65.9–89.2) 38/52 (73.1; 59.0–84.4) 43/53 (81.1; 68.0–90.6) 44/54 (81.5; 68.6–90.7)
Day 180 30/51 (58.8; 44.2–72.4) 43/51 (84.3; 71.4–93.0) 36/51 (70.6; 56.2–82.5) 43/51 (84.3; 71.4–93.0) 40/52 (76.9; 63.2–87.5)

GMFR (mean [95% CI])c

Day 21 2.7 (2.1–3.5) 3.9 (2.9–5.2) 3.2 (2.4–4.1) 4.0 (3.1–5.3) 5.1 (3.8–7.0)
Day 42 3.7 (2.8–4.8) 4.5 (3.3–6.1) 3.7 (2.8–5.0) 4.4 (3.4–5.8) 5.5 (4.1–7.5)
Day 180 3.4 (2.6–4.5) 4.5 (3.4–6.0) 3.7 (2.8–4.9) 4.5 (3.4–5.9) 5.1 (3.8–7.0)

a Single radial hemolysis (SRH) area of �25 mm2.
b SRH area of �25 mm2 after immunization in case of negative baseline sample (�4 mm2) or �50% increase in SRH area if baseline sample is �4 mm2.
c Geometric mean fold rise (GMFR) compared to baseline.
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95% CI, 0.492 to 0.585), emphasizing the uncertainty surround-
ing the choice of the cutoff titer for the MN assay. The higher MN
titer corresponding best to the HI titer cutoff of 1:40, compared to
the lower MN titer which correlates best with the 25 mm2 SRH
area cutoff, might be due to the relatively low sensitivity of the HI
assay compared to that of the SRH assay.

Based on the findings of the present study, a 15-�g dose of the
whole-virus H9N2 vaccine would be required to meet all three EU
immunogenicity criteria based on the HI assay data. In contrast, a
much lower dose of only 3.75 �g would comfortably meet all
immunogenicity criteria based on the SRH assay data. There are
no widely accepted criteria for licensure based on MN assays;
however, if the same immunogenicity criteria are applied to the
MN assay results, irrespective of whether a seroprotection cutoff
titer of 1:20, 1:40, or 1:80 is used, these criteria are also all com-
fortably met for the 3.75 �g dose. These data would indicate that it
is necessary to review the appropriateness of the HI cutoff of 1:40

as the sole criterion for licensure of pandemic influenza virus vac-
cines, particularly in view of the importance of antigen sparing in
a pandemic situation.

Some previous studies of H9N2 vaccines based on a G1 lineage
virus, which were undertaken in the United Kingdom, reported
that the HI and MN antibody responses induced in individuals
born in or before 1968 were higher than those born after that year
(28, 29). These studies suggested that older individuals were im-
munologically primed to the H9N2 vaccine, possibly by previous
exposure to H2N2 viruses (28, 29). In contrast, a more recent
study of an H9N2 virus based on a G9 lineage virus and performed
in the United States did not find such age-related differences in the
antibody responses (44). In the present study of a G9 lineage vac-
cine, undertaken in the United States, there was also no difference
in the HI and MN antibody responses in subjects born after 1968
and those in subjects born in or before 1968, in agreement with the
previous study of a G9 lineage H9N2 vaccine undertaken in the
United States. There was a significantly higher SRH antibody re-
sponse in the older age group at baseline than in the younger age
group. However, this difference was not significant at any other
time point. The reason for the difference in the SRH antibody
titers between the two age groups at baseline is not clear. SRH data
were not reported for previous studies of H9N2 vaccines (28, 29,
44, 45). Taken together, the present and previous data indicate
that the effects of antigenic priming by potential previous expo-
sure to H2N2 viruses might be different for H9N2 vaccines of the
G1 and G9 lineages or that there might be differences in the United
Kingdom and U.S. demographics with respect to previous expo-
sure of the population to H2N2 viruses.

Although for licensing purposes, serum HI, SRH, or MN anti-
body titers are accepted as being indicative of vaccine efficacy,
other vaccine-induced immune responses may also contribute to
the amelioration of disease severity and/or the prevention of virus
shedding. Neuraminidase (NA)-inhibiting (NAi) antibodies have
the potential to prevent virus release, which in turn can reduce the
severity of influenza disease (16), and NA-specific antibodies have
been demonstrated to correlate with protection in animals and
humans (51, 52). The immunological response to NA might be of
particular importance in the event of an H9N2 pandemic, in
which the majority of the population would be naive to the H9 HA
protein but may have preexisting immunity to N2 NA as a result of
earlier exposure to seasonal H2N2 or H3N2 viruses. In this re-
spect, a limitation of the present study is that we did not investi-
gate the induction of NAi antibody responses. However, in non-
clinical studies, the whole-virus H9N2 vaccine induced high levels
of functional antibodies capable of inhibiting the function of the
H9N2 neuraminidase (27). High-titer NAi antibodies have also
been demonstrated in clinical studies of a whole-virus H5N1 vac-
cine (10, 53), suggesting that the effective induction of NAi anti-
bodies is a consistent feature of whole-virus influenza virus vac-
cines. Taken together, the clinical and preclinical data generated in
studies of the nonadjuvanted whole-virus H9N2 vaccine suggest
that it would be a safe, well-tolerated, and effective intervention in
the event of a pandemic caused by an H9N2 influenza virus. These
data also extend the clinical data set generated for other nonadju-
vanted candidate pandemic influenza virus vaccines based on
H5N1 and H1N1 viruses (7–11, 38, 40, 54, 55) and support the
general safety and immunogenicity profiles of such vaccines for
prepandemic and pandemic vaccination.

FIG 2 Effect of age group on antibody responses to H9N2 vaccine. Antibody
responses at baseline, 21 days after the first and second vaccinations, and 180
days after the first vaccination, as determined by an HI assay (A), MN assay (B),
and SRH assay (C) in participants born in or before 1968 (black bars) and after
1968 (gray bars). The data are the geometric mean titers (GMTs) or geometric
mean SRH area, and 95% CIs, pooled for all dose groups.
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